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LETTER TO THE EDITOR 

Self-similarity and structure of DLA and viscous 
fingering clusters 

Einar L Hinrichsen, Knut JIdrgen Milby, Jens Feder and Torstein JIdssang 
Department of Physics, University of Oslo, Box 1048, Blindern, 0316 Oslo 3, Norway 

Received 8 February 1989 

Abstract. Diffusion-limited aggregation clusters and the structures observed in viscous 
fingering experiments at high capillary numbers are tree-like fractals. The different branches 
may be assigned a branch order in a way that exhibits scaling, and permits a self-similar 
characterisation in terms of the bifurcation ratio r, and the length ratio r, of branches of 
different orders. The fractal dimension is given by D = ln(rN)/ln(l/rL). Good agreement 
between experiments and simulations is found. A crossover function characterises the 
branch orders. 

The diffusion-limited aggregation model [ 11 (DLA) generates fractal [2] structures and 
is the prototype of ‘Laplacian’ [3,4] growth models that lead to ramified tree-like 
structures. In simulations of the DLA model one finds that the radius of gyration R, 
of the growing cluster scales with the mass M of the cluster as [ 5 ]  M - Rfg where 
Dg, the radius-of-gyration dimension or growth dimension, is 1.71 in two, and 2.5 in 
three dimensions. Many two-dimensional growth processes exhibit regimes where the 
observed structures resemble DLA clusters with D = 1.7 [6]. The analogy between DLA 
and viscous fingering (VF) in porous media was first pointed out by Paterson [7] and 
a modified DLA model [8] simulates the observed VF dynamics accurately. For a 
discussion of irreversible growth models see [6] and [9]. 

DLA clusters have different scaling properties in the radial and azimuthal directions 
[ 101. This gives rise to the questions: is DLA self-similar? In spite of the recent progress 
of a renormalisation group approach [ 141 in estimating the fractal dimension of DLA, 
much remains to be done, particularly in reconciling the many diferent fractal 
dimensions that arise when DLA-like structures are analysed; see table 1. 

We introduce a new way to characterise DLA clusters and VF patterns in terms of 
a hierarchy of branch orders. The concept of branch orders has previously been used 
by Horton [ 111 t in the description of river systems. However, to our knowledge this 
is the first time this concept has been used for physical systems. Horton found that 
the bifurcation ratio r N  between the number of streams of two subsequent orders was 
constant for many river systems. He also found that the length ratio rL between two 
subsequent orders was constant. For DLA and other branching structures without loops 
it is possible to assign branch orders in the following way. Each branch defines a 
continuous line, starting at a tip, and ending on another branch of lower order if it is 
not the ‘trunk’ (zeroth-order branch). More than two branches may meet at a single 

t For a discussion see [9, I 12.21, but note that there is an erroneous expression for D in the first and second 
printing. 
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Table 1. Fractal dimensions for DLA and VF. 

DLA VF 

Branch order ratios 

rN = N,, /N, - ,  Number 5.2 * 0.2 4.8 * 0.5 
rL= L,IL,-, Length 0.35 * 0.01 0.34 * 0.04 

Dimensions 

Ds=- Self-similarity 1.6;tO.l 1.5*0.1 MI/ rL) 

N ( S )  - K D b  Box 1.62 * 0.02t 1.51 * 0.06 
N ( S )  - S - D b  Box$ 1.67i0.03 - 

M ( r )  - rDc Cluster 1.69 * 0.011 1.62 * 0.05t 

t Estimated by scaling different cluster sizes onto the same curve. 
$ Box-counting only points with r < R,. 

M ( R J - R F s  Growth 1.710*0.005 - 

point. The highest-order branches are those which have no side branches. The 
next-to-highest-order branches have side branches of the highest order, and so on. If 
branches of the same order n meet, the longest branch is relabelled and assigned order 
n - 1. The minimal side branch order of a given point on a branch is the lowest side 
branch order found when going from the tip to this point. A unique assignment of 
branch orders is obtained if the minimal side branch order does not decrease in steps 
larger than one when going from the tip to the root point. 

We have discovered that both DLA clusters and VF patterns have a branching ratio 
rN and a length ratio rL independent of branch order n. The self-similarity of these 
statistical tree-like structures is therefore analogous to well known determinstic recur- 
sive structures such as the triadic Koch curve [2]. We also find for DLA and VF that 
the longest ( n  = 0) branches are one dimensional. The higher-order branches are (for 
a given n )  fractally distributed on scales above their average length L, and one 
dimensional on scales below L,. This behaviour is characterised by a crossover function 
intrinsic to DLA and VF. Numerically we find good agreement between simulations 
and experiments, lending further support to the hypothesis that VF and DLA are in the 
same universality class. 

The hierarchical ordering of self-similar fractal trees is best illustrated by discussing 
a deterministic algorithm as defined in figure 1. The initiator [2] shown in ( a )  is a 
line segment. The generator (b) replaces this line segment by X = 5 new line segments 
each scaled down by the ratio r = f. In ( c )  the generator is applied again giving the 
second-generation prefractal [9]. After an infinite number of applications of this 
algorithm one arrives at a fractal set. This set is self-similar and has a similarity 
dimension [2,9] 0, = log(X)/log(l/r) = 1.46 . . . equal to the fractal dimension of the 
set. Each piece of the fractal is a scaled-down version of the whole set, as is required 
for self-similar fractals. 

The branches of this structure may be characterised as follows. In ( a )  we have a 
tree-like structure containing only the trunk, which we identify as a branch of order 
0 and length 1. In ( 6 )  we have added two side branches of order 1 and length 4. In 
(c) the structure contains one branch of order 0, 2 branches of order 1, and 10 new 
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Figure 1. A recursively defined tree structure: -; a zeroth order branch; - - - -, first-order 
branches; -; second-order branches. The last figure is the result after seven iterations; 
see text for a full explanation. 

branches of order 2. These new branches have a length of $. If we continue this 
process, we will at each stage have a branching prefractal with branches of order 
0 ,1 , .  . . . The number N, and length L, of branches of order n are given by 

L, = LmrZ-m and N, = Nmrk-m (1) 

where in this example rL = 4, rN = 5 ,  and m = 1 is a lower cut-off for the validity of the 
scaling relations. In general the similarity dimension is given by D, = In( rN)/ln( 1/ rL) 
for three structures with fixed rN and r,. 

This result is also obtained by a ‘box-counting’ procedure. Let the structure be 
covered by small ‘boxes’ having shapes chosen for optimal coverage but with the same 
length S = L, and width -2L,-1 = 2rLS. Using (1) we find that the number of boxes 
needed to cover the fractal is given by 

n 

i=O 

where D=ln(rN)/ ln( l / rL)  is the fractal dimension. A and B are constants. The 
branches of order n = 0 to n = m - 1, that do not follow the scaling relation in ( l ) ,  
contribute only to the last term in (2). This method of finding the fractal dimension 
using optimally shaped pieces to cover the fractal is closer to the Hausdorff-Besicovitch 
definition than the box-counting method [ 21. Neglecting the corrections to scaling, 
i.e. the last term, in (2), we find that the number of pieces N(S)  of ‘diameter’ 6 needed 
to cover the fractal is given by 

This result shows that the fractal dimension for scaling trees is given by the similarity 
dimension. If one instead covers the fractal with square boxes of side 8, one finds 
that the number of boxes needed to cover the fractal is N(6)  - K D b ,  where Db is the 
box dimension [2]. 

We have analysed viscous fingering patterns obtained from experiments in a 
two-dimensional porous medium [ 81 and also computer-simulated off -lattice DLA 

clusters using these ideas. These structures have almost no loops, and may therefore 
be described as trees. 
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We generated 200 DLA clusters of size lo3, 50 of size 5 x lo3, 30 of size 2.5 x lo4, 
20 of size 5 x lo4, and 10 of size 2.5 x lo5. Each particle added to the cluster was 
assigned a pointer to the particle to which it was attached. The tree structure was 
identified after the DLA seed particle in the centre was removed. To identify one 
branch, we started at the last particle and used the pointer to find the particle to which 
it was attached, and then to the particle to which this one was attached, and so on all 
the way to the DLA seed particle. The other branches were found in a similar way, 
keeping track of the branch order of the different branches. The fractal dimensions 
obtained for these clusters are summarised in table 1. There has been some discussion 
as to whether or not D b  is equal to Dg.I2 The crossover regime clearly visible for 
r >  R, in the cumulative mass within radius r ;  M ( r )  = M(r/R,)D.f(r/R,) [8], may 
account for these discrepancies. Here M is the total mass or, equivalently, the total 
number of particles of a given cluster, and f is a crossover function. D, is called the 
cluster dimension. Naively box-counting the whole cluster at a given stage of growth 
gives values of D b  in the range 1.59-1.63, depending on the range of S used in the fit. 
If the box-counting is limited to the part of the cluster inside a box of size R,, we find 
values of Db in the range 1.63-1.69. Even though this leads to an estimate of D b  lower 
than D,, they may be equal within errors. Measuring D, of the cumulative mass M ( r )  
for r < R, where f is constant, gives 0, = 1.69. The behaviour of the total mass M 
with respect to R, necessarily includes the crossover regime. But if the mass and size 
of this regime still scales the same way, D, should not be affected. Numerically the 
scaling M - R,”s appears to be the most robust of the scaling relations we have tested, 
showing no sign of correction terms after a rather small initial growth. Instead we 
find that the local slope of ln(M) as a function of ln(R,) has a small oscillatory 
behaviour around its mean value. 

The experiments were carried out in a two-dimensional porous model 40cm in 
diameter, consisting of a single random layer of 1 mm diameter glass beads glued 
between two glass plates. The experimental arrangement has been described before 
[8]. The pore space was initially filled with glycerol. Air at a constant pressure was 
then injected in the centre. The structures observed at high capillary numbers were 
the typical DLA-like viscous fingering structures [8]. The fractal dimensions given in 
table 1 were obtained by digitising photographs of the VF structures at a resolution of 
2000 x 2000 pixels. The branch orders were, however, identified manually from the 
pictures. 

The branching ratio r, and length ratio rL were obtained by fitting the number 
and length of branches of order n to the power laws N,-r% and L,-r;. In the 
simulations, the average length of a branch was defined as either the average mass of 
the branch or the average tip-to-root distance of a branch. Both of these definitions 
gave approximately the same value for r,. In the experiments, the average length of 
a branch was identified as the average mass. In figures 2 and 3 we show the experimental 
result together with results obtained from simulations for all the different cluster sizes. 
The points shown are the average values for these different cluster sizes. For a given 
size, the values fall on a straight line either above or below the average curve. The 
size of the cluster is, however, not correlated with this deviation from the average 
value. This scatter is instead related to the fact that averaging is done with fixed mass 
and not for a fixed maximal order. Note also that the scaling of the different cluster 
sizes in figure 3, show that R,- L, for all orders n, also orders n < m (‘2 for DLA) 
that do not follow (1). Using this result in (3) gives the identification D,= D, since 
the total mass M - N ( S )  - Rfg, The values of rL and r, do not change if the 
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Figure 2. The number of branches N, at a given order as a function of branch order n 
for VF experiments (0) and DLA simulations (e). The lines represents fits of N. - r& to 
the data, with r, = 4.8 for VF and 5.2 for DLA. The experimental points have been shifted 
up one decade for clarity. 
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Figure 3. The scaled average length L J R ,  plotted against branch order n. L, is given by 
the tip-to-root distance in DLA (0) and the average mass in the VF experiments (0). Lines 
are fits of L, - r: to the data, with r, = 0.34 for VF and 0.36 for DLA. The experimental 
points have been shifted down for clarify. 

analysis is limited to the part of the cluster within R,. The scaling relations are therefore 
not changed in the crossover regime. 

The two ratios characterising the branching structure of the tree-like fractals give 
D = 1.6 from (3) for DLA clusters, consistent with other dimensions quoted in table 1. 
The viscous fingering result D = 1.5 is also consistent with other values quoted in table 
1. 

For the DLA clusters, we have analysed each branch order separately in terms of 
the box counting algorithm. The insert in figure 4 shows the number N,(6)  of filled 
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Figure 4. The insert shows the result of box-counting individual orders for clusters of size 
2.5 x lo5 particles. Slopes of broken lines are 1.0 (lower line) and 1.62 (upper line). The 
main figure shows the scaling function g ( S / L , )  obtained by scaling similar curves for six 
different cluster sizes. Slope of broken line is 0.62. 

boxes of order n as a function of the box size S.  These curves have a linear regime, 
Nn( S )  - S ,  for box sizes less than L, and a fractal regime, N,(S)  - for 6 larger 
than L,. We therefore expect Nn(S)  to have the scaling form 

N,(6) = MS-Dg(S/L, ) .  (4) 

The mass M is the total cluster mass. The crossover function g ( x )  is constant for 
S > L, and tends to xD-'  for 6 < L,. This is indeed demonstrated in figure 4, where 
all branch orders from clusters of six different sizes are scaled onto one single curve. 
Note that g ( S / L , )  depend on n only through the ratio S/L, .  The length of the lowest 
orders is not fully grown because it is calculated by taking the mean value of different 
clusters of the same size and not at a given order. For that reason we cannot expect 
the lowest order to fit very well in the scaling plot, explaining some of the scatter seen. 
Also, as the insert in figure 4 shows, the higher-order branches cross over at small 6 
to a slope close to 0 instead of 1. These branches consist of 1-2 particles and are 
therefore basically points. The highest-order branches from all the different cluster 
sizes collapse without scatter onto one curve in this regime, which is the curve that 
deviates most from the scaling function seen in figure 4. 

We conclude that DLA and VF patterns are tree-like structures having fixed bifurca- 
tion and length ratios independent of branch order. From these two ratios, a fractal 
dimension may be defined analogous to the self-similarity dimension of deterministic 
self-similar fractals such as the deterministic tree in figure 1. This dimension is 
consistent with values obtained from other methods. We have shown that DLA and 
VF clusters are self-similar in terms of branch order. The branches of DLA are linear 
on length scales less than the average branch length, and fractally distributed on larger 
scales. This feature is characterised by the scaling function g ( S / L , ) ,  valid for all but 
the largest and smallest branches. We have also shown that the lengths L, all scale 
with R,. 

Comparing the results obtained both from the simulations of the DLA clusters, and 
the viscous fingering experiments at high capillary numbers, we see a close agreement 
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in both the bifurcation ratio and the length ratio. This lends further support to the 
hypothesis that these two processes are in the same universality class. 

After the completion of this manuscript we received preprints [ 131 by J Vannimenus 
that analyse tree structures using ‘Strahler numbers’ which originally were used to 
analyse river systems [ 141. Vannimenus investigates tree structures using this scheme, 
and he introduces a ramijication matrix. The Strahler classification of branch orders 
is related to the Horton scheme, and we consider the two approaches to be com- 
plementary. 

We thank A Aharony and P Meakin for very helpful and stimulating discussions. This 
work has been supported by VISTA, a research cooperation between the Norwegian 
Academy of Science and Letters and Den norske stats oljeselskap a s .  (STATOIL). 
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